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A B S T R A C T

A fast and reproducible protocol for milk Nuclear Magnetic Resonance (NMR) metabolomic fingerprinting was
developed, allowing for an accurate discrimination among milk samples from large-scale distribution, as well as
among milk sample from different farms located in the same restricted geographical area. Seasonal variations in
milk composition and correlations with cows' nutritional patterns are also assessed, underlining relationships
between feeding and metabolites. The most important difference was related to the use of silage feeding. This
finding is relevant to assess the suitability of milk for different dairy products. A prominent example is parmesan
cheese, the preparation protocol of which excludes milk from silage-fed cows.

1. Introduction

Bovine milk is an important diet constituent. Lipids and lactose are
the two main nutrients, but milk also contains a wide range of bioactive
compounds such as immunoglobulins and other immune proteins,
peptides and nucleotides (Ulrik K. Sundekilde, Larsen, & Bertram,
2013). Being a biological fluid, the composition of milk is influenced by
several factors such as breed, individual metabolism of the animals,
season, health status, nutrition and milking protocols (Lamanna, Braca,
Di Paolo, & Imparato, 2011; Tian et al., 2016). All these factors con-
tribute to the variability of milk metabolite profiles; in fact, milk me-
tabolites can originate from different metabolic pathways in the animal
organism. The chemical composition of milk is important to understand
its nutritional value, including bioactive compounds, its technological
properties, and the potential use of biomarkers in milk as diagnostic
tools for cows health (Sundekilde, Poulsen, Larsen, & Bertram, 2013).
Metabolomics allows for the simultaneous characterization of large
amounts of compounds in biological matrices and can provide a more
detailed molecular picture of food composition, food consumption or
about the consequences of diets (Wishart, 2008). Milk metabolome has
been studied using different metabolomics approaches in order to ex-
trapolate information on fat composition (Kalo, Kemppinen, &
Kilpeläinen, 1996) or structural changes in caseins and other proteins
(Leslie, Irons, & Chapman, 1969). Through metabolomics it was

possible to find biomarkers that are correlated with the health status of
bovines: for example β-hydroxybutyrate, phosphocholine and glycer-
ophosphocholine could be used as biomarkers for ketosis (M. S. Klein
et al., 2010). The composition of milk is also important for the pro-
duction of dairy products because many factors are known to influence
the coagulation properties of milk (Bittante, Penasa, & Cecchinato,
2012). Two additional aspects are also related to consumers' expecta-
tion: the first concerns the nutritional value of milk, and 1H NMR
spectroscopy has also been used to validate the labelling in relation to
particular nutritional features (Monakhova, Kuballa, Leitz, Andlauer, &
Lachenmeier, 2011); the second is related to the authentication and the
control of geographical origin. In fact, the commercial value of many
dairy products is closely associated with the origin and composition of
milk. A few cases have been reported about the use of NMR spectro-
scopy for traceability of geographical origin of cow and buffalo milk
(Brescia, Monfreda, Buccolieri, & Carrino, 2005)(Sacco et al., 2009).
However, they were focused on the identification of provenance from a
large territorial basis (e.g. different provinces or countries), relied on a
limited number of samples, and did not address the relation between
milk composition and cows' feedings.

In the present study, to provide a proof of concept for the ability of
NMR-based metabolomics to distinguish different milk samples, we first
determined the metabolic profiles of three different milk brands ob-
tained from large-scale distribution. In doing so we developed an
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original protocol for metabolites extraction from milk to allow for a fast
and reproducible acquisition of NMR spectra and compared our pro-
cedure with the most common methods described in the literature.
Then we applied the same analytical protocol to monitor the origin of
milk samples collected in ten farms located in a relatively small valley
in the north of Tuscany (Italy), called Mugello. The rationale for this
design was to prove that NMR-metabolomics is sensitive enough to
accurately assess the provenance of milk even at the scale of each in-
dividual farm in a small territory. We analysed also cow feeding data in
order to understand the contribution of different nutritional profiles on
the changes of the milk metabolic profile.

2. Materials and methods

2.1. Sample collection

Whole pasteurized milk was collected from the large-scale dis-
tribution in three different periods: Autumn 2013 (September/
October), Spring 2014 (April/May) and Autumn 2014 (September/
October). Packaged milk of three major Italian brands (“Latte Coop”,
“Granarolo” and “Mukki Mugello”) was collected (twenty milk samples
for each brand in each period).

Samples coming from ten different farms located in the Mugello
valley were collected in two different periods, Autumn 2013 and Spring
2014, in parallel with large-scale distribution (supermarket) milk. For
each period, twenty raw milk samples were collected from each farm in
twenty different days. Each sample consisted of a mixture of the milk
produced in the same day by all bovines in a single farm. A total of 40
samples per farm were thus collected in the two collection periods (200
samples in Autumn 2013 and 200 samples in Spring 2014) and ana-
lysed.

The ten Mugello farms belongs to two categories, “organic” and
“non-organic”. The organic farms meet the requirements stated in the
Europeans Regulations (N. 1804/1999, 834/2007, 889/2008), about
organic productions and labelling of organic products. The organic
group is composed by three farms, whereas the remaining seven farms
compose the non-organic group. Once the milk coming from these
farms arrives at the Milk Factory of Florence, Italy, it is pooled in two
distinct tanks, one for the organic and one for non-organic milk. This
bulk raw milk is then pasteurized and packaged. In addition to the
collections at the individual farms, bulk raw milk samples (before
pasteurization and packaging) coming from non-organic and organic
farms were collected in Autumn 2013 and Spring 2014 directly from the
Milk Factory; in both collections, 20 samples from each of the two kinds
of bulk milk were analysed. Finally, eight samples coming from eight
randomly selected Mugello farms were collected in 2015 (2nd March)
as a blind dataset to be used to test the predictive ability of the milk
fingerprints obtained in the two previous collections. A summary dia-
gram of collected samples is reported in Supplementary Fig. 1.

2.2. Cow feeding data

Regarding raw milk samples from farms, for each day of collection
we recorded also the cow feeding rations, reported as kilograms of food
per bovine. In particular, we divided the nutritional rations in eight
categories: silages, wrapped hays, dry hays, legumes flours and proteic
foods, cereal flours and energetic foods, protein supplements, energy
supplements, mineral salts and vitamin supplements.

2.3. Sample preparation for NMR analysis

All milk samples were processed in the same way in order to
minimize errors due to the pre-analytical phase. All samples were
stored at 4 °C for at most 12 h before sample preparation. Freezing was
avoided to prevent breaking of the somatic cells and the leaking of cell
metabolites in the milk.

In order to evaluate the best preparation procedure, we compared a
method developed in our laboratory with respect to other methods
described in literature. The metabolite profiling following our own
method consists of mixing 700 μl of milk with 700 μl of di-
chloromethane (CH2Cl2). The mixture is homogenized by vortexing and
then is incubated for 10min at room temperature. The mixture is then
centrifuged at 14000 rpm for 30min and the supernatant is recovered.

For comparison, we acquired also NMR spectra after using other
published extraction procedures. We followed four different protocols
described in literature, in particular: chloroform and deuterated
chloroform instead of dichloromethane was used in 1:1 ratio with the
sample (Lamanna et al., 2011); filtration of milk using a 10 kDa cut-off
was performed in order to remove high-molecular weight molecules
(Matthias S. Klein et al., 2012; U. K. Sundekilde, Poulsen, et al., 2013);
a 75min ultracentrifugation followed by a centrifugation of the ob-
tained supernatant was also tested (Lu et al., 2013); the analysis of the
whole milk without any manipulation was also finally performed (Ulrik
Kræmer Sundekilde, Frederiksen, Clausen, Larsen, & Bertram, 2011).

In all cases 300 μl of the samples obtained by the various methods
were mixed with 300 μl of a sodium phosphate buffer (70mM
Na2HPO4; 20% (v/v) 2H2O; 0.025% (w/v) NaN3; 0.8% (w/v) sodium
trimethylsilyl [2,2,3,3-2H4]propionate (TSP); pH 7.4). A total of 450 μl
of this mixture was transferred into a 4.25mm NMR tube (Bruker
BioSpin srl) for analysis.

2.4. NMR analysis

One-dimensional 1H NMR spectra of milk extracts were measured
on a Bruker spectrometer operating at 600.13MHz proton Larmor fre-
quency and equipped with a 5mm CPTCI 1H-13C/31P-2H cryo-probe
including z-axis gradient coil, an automatic tuning-matching (ATM) and
an automatic sample changer. A PT 100 thermocouple provided tem-
perature stabilization at the level of approximately 0.1 K at the sample.
Before measurement, samples were kept for at least 3 min inside the
NMR probe for temperature equilibration (310K)·One-dimensional
NMR spectrua were acquired with water peak suppression adopting a
standard pulse sequence (NOESYpresat, Bruker), using 64 free induc-
tion decays (FIDs), 64 k data point, a spectral width of 12,019 Hz, an
acquisition time of 2.7 s, a relaxation delay of 4 s and a mixing time of
100ms. 2D 1He1H COSY with presaturation during relaxation delay
using gradient pulses for selection (cosygpprqf, Bruker) was acquired
using 2 k to 512 data points, 8 scans with a relaxation delay of 4 s,
acquisition time of direct and inverse dimensions of 0.15 s and 0.038 s
respectively. 2D 1He13C HSQC via double inept transfer using sensi-
tivity improvement, phase sensitive using Echo/Antiecho-TPPI gradient
selection with decoupling during acquisition using trim pulses in inept
transfer with gradients in back-inept (hsqcetgpsi2, Bruker) was ac-
quired using 1 k to 256 data points, 32 scans with a relaxation delay of
2 s, acquisition time of direct and inverse dimensions are 0.77 s and
0.005 s respectively.

2.5. Spectral processing

Free induction decays were multiplied by an exponential function
equivalent to a 1.0 Hz line-broadening factor before applying Fourier
transform. Transformed spectra were automatically corrected for phase
and baseline distortions and calibrated (TSP peak at 0.00 ppm) using
TopSpin (Bruker). For multivariate analysis, each 1D spectrum in the
range between 0.02 and 10.00 ppm was segmented into 0.02-ppm
chemical shifts bins, and the corresponding areas were integrated using
AMIX software (Bruker BioSpin). The dichloromethane and water re-
gions (between 4.5 and 5.65 ppm) were removed. After having ex-
cluded that signals of lactose, that account for a major part of the total
area, vary too much between farms/seasons etc. (Supplementary
Fig. 2), the total spectral area was calculated on the remaining bins and
was used for the normalization of the data prior to pattern recognition.

L. Tenori et al. Food Research International 113 (2018) 131–139

132



Normalization to the external reference (TSP) has been avoided in this
study since TSP levels are not stable, suggesting the interaction with
some proteins or peptides in the samples (Supplementary Fig. 3).
Normalization using probabilistic quotient normalization (Dieterle,
Ross, Schlotterbeck, & Senn, 2006) (PQN) was also used for comparison
(see section 3.3).

2.6. Statistical analysis

Data reduction was carried out by means of projection into a Partial
Least Square (PLS) subspace, and the canonical analysis (CA), as a
method to post-process the PLS results (Ergon, n.d.; Ghadiri, Rezaei,
Tabatabaei, Shahsavari, & Shahsavari, 2016), was applied to enhance
the supervised separation of the analysed groups (Yu & MacGregor,
2004),. Accuracy, sensitivity and specificity for the different classifi-
cations were assessed by means of 100 cycles of a Monte Carlo cross-
validation scheme (MCCV, R script in-house developed). Briefly, 90% of
the data were randomly chosen at each iteration as a training set to
build the PLS-CA model. Then, the PLS-CA scores for the remaining
10% (test set) were obtained by projecting the test spectra into the
training PLS-CA space. For classification, k-Nearest Neighbours (k-NN)
method (k= 5) was applied (Cover & Hart, 1967) using the PLS-CA
scores of the training set to drive the classification of the calculated
PLS-CA scores of the test set. Test samples were predicted according to
the position of the respective PLS-CA scores in the PLS-CA space cal-
culated using the training set. Sensitivity, specificity and accuracy for
the classification were assessed. The procedure was randomly repeated
100 times to derive an average discrimination accuracy for each group
of samples.

Principal Component Analysis (PCA) was used to analyse cow
feedings data obtained for each farm in order to highlight common
nutritional profiles.

For the analysis of metabolite content, all resonances of interest
were manually checked, and signals were assigned on template one-
dimensional NMR profiles by using matching routines of AMIX 7.3.2
(Bruker BioSpin) in combination with the BBIOREFCODE (Version 2–0-
0; Bruker BioSpin), reference database and published literature when
available (Sundekilde, Larsen, & Bertram, 2013). The relative con-
centrations of each metabolite were calculated by integrating the cor-
responding signals in the spectra. Variations were reported as log2(Fold
Change) and significant differences were assessed using the Wilcoxon
test. P-values were adjusted for multiple comparisons using Bonferroni
correction(Bonferroni, 1935) in which the P-values are multiplied by
the number of comparisons.

All data analysis were performed using the R statistical environment
(“R Core Team (2014). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.,”
n.d.).

3. Results

3.1. A novel preanalytical protocol for NMR analysis of milk

All the procedures described in Materials and Methods section can
be considered equally effective for the analysis of milk samples. In
Fig. 1, a comparison among spectra obtained from the same milk
sample using different extraction methods is reported. In the case of the
use of whole milk without any pre-processing (Ulrik Kræmer
Sundekilde et al., 2011) (spectrum 6), signals derived from high-mo-
lecular weight molecules and lipids are clearly visible and they tend to
cover signals derived from metabolites. To remove macromolecules,
filtration with 10 kDa cut-off (Matthias S. Klein et al., 2012; Sundekilde,
Larsen, & Bertram, 2013) (spectrum 4) or ultracentrifugation (Lu et al.,
2013) (spectrum 5) permit the obtainment of good quality spectra, but
they are time consuming procedures and, in the case of filtration, they
are also expensive when a large number of samples need to be

processed. Using a 10 kDa cut-off it is possible to eliminate the mac-
romolecules and the obtained spectrum shows well resolved signals and
no baseline distortion: the effectiveness of this method was also de-
monstrated in (M. S. Klein et al., 2010), where the authors were able to
assign a total of 44 metabolites in filtered milk using both GC–MS and
NMR (25 and 23 metabolites, respectively). With ultracentrifugation,
followed by another centrifugation of the supernatant, the quality of the
spectrum is lower with respect to filtration because some broader sig-
nals due to lipids and proteins are still present.

The use of an organic solvent (Lamanna et al., 2011) is the fastest
way for the preparation of milk samples. Chloroform stabilized with 1%
of ethanol has been used in several cases, therefore ethanol peaks are
present in the NMR spectrum and cover important spectral regions
(spectrum 1). Conversely dichloromethane has only a singlet peak near
the water peak, which can be easily removed before pattern recognition
analysis. Significantly, the comparison of spectra obtained after ex-
traction with deuterated chloroform (spectrum 2) and dichloromethane
(spectrum 3) demonstrates that β-hydroxybutyrate and creatine signals
can be better detected when dichloromethane is used. Moreover, con-
sidering also that non-deuterated solvents are cheaper, we eventually
decided to proceed using dichloromethane extraction. Last but not
least, dichloromethane is the least toxic of the chlorohydrocarbons
(Brown-Woodman et al., 1998; Honma & Suda, 1997).

3.2. Metabolomic fingerprinting of large-scale distribution milk

According to the experimental scheme reported in Supplementary
Figs. 1, 60 samples from three Italians milk brands (20 samples each)
were collected in a supermarket during three periods: Autumn 2013,
Spring 2014, and Autumn 2014, for a total of 180 milk samples re-
trieved from the large-scale distribution. Our first aim was to test our
system and to evaluate whether it was possible to discriminate each
single brand.

The preanalytical and analytical approaches chosen proved to be
particularly efficient for the NMR analysis of milk samples. The ac-
quired spectra resulted of high quality, well resolved and with many
visible peaks. Supplementary Fig. 4 shows a superimposition of the 60
spectra from the Autumn 2013 collection. From the figure, the high
reproducibility of the spectra can be inferred. Supplementary Fig. 5 and
Supplementary Table 1 show in detail the assigned peaks.
Supplementary Figs. 6 and Supplementary Fig. 7 show the 2D spectra,
1He1H COSY and 1He13C HSQC respectively, used to confirm 1D as-
signments; Supplementary Fig. 8 shows a zoomed region of the HSQC
spectra.

The analysis of the metabolic fingerprints of milk samples was
performed using PLS-CA and Monte Carlo cross-validation: for all the
three collection periods, it was possible to clearly distinguish the three
brands (Fig. 2A, B and C), with a mean cross-validated accuracy over
95% in all the three cases (Supplementary Table 2), demonstrating the
efficacy of both the chosen extraction protocol and the statistical
strategy.

3.3. Metabolomic fingerprinting of milk from specific farms

To assess whether NMR-metabolomics, coupled with suitable pre-
analytical and statistical approaches, is sensitive enough to accurately
identify the origin of milk samples even from individual farms in a
limited geographic area, twenty samples from ten different farms lo-
cated in the Mugello valley (about 1100 Km2) were collected in Autumn
2013 and Spring 2014, for a total of 400 milk samples (Supplementary
Fig. 1).

Using PLS-CA on the spectral data (Autumn 2013 collection), the
ten farms were well-discriminated, except two of them (3 and 4) that
were not distinguishable (Fig. 3A). In this case, the mean cross-vali-
dated accuracy was 82%. It later turned out that farms 3 and 4 indeed
were a single farm, represented by two different company names used
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to market different dairy products: the cows were actually the same,
living in the same environment and receiving the same kind of feedings.
Correctly considering these two group of samples as coming from a
single farm, the cross-validated accuracy for the recognition (of nine
farms) became very high (97%, see Supplementary Table 3), demon-
strating that each farm is characterized by a specific metabolic finger-
print of its milk. The same situation (Fig. 3B) and similar average ac-
curacy (97%) was found also for the 2014 collection. To test the effect
of a different kind of normalization on the recognition accuracy, PQN
(Dieterle et al., 2006) was also used, showing comparable results
(97.5% and 96.8% of accuracy for the 2013 and 2014 collections,

respectively). Total area normalization was then used in all the sub-
sequent analyses.

The comparison between bulk raw milk samples coming from or-
ganic and non-organic farms, resulted in a very high cross-validated
accuracy for the discrimination (about 99%, Supplementary Fig. 9).

3.4. Metabolomic fingerprinting of seasonal variations

In order to evaluate whether the pattern recognition was preserved
independently of the season, all the data collected for milk from the
nine farms (the two different collections) were merged together. The

Fig. 1. Comparison among 1H NMR spectra obtained from the same milk sample using different extraction methods. Chloroform (1), deuterated chloroform (2),
dichloromethane (3), filtration with 10 kDa cut-off (4), ultracentrifugation (5), raw milk (6). Some metabolites are highlighted: β-hydroxybutyrate (a), N-acetyl
group (b), citrate (c), creatine (d), creatinine (e), choline (f), lactose (g), orotate (h), fumarate (i), hippurate (l).
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cross-validated accuracy obtained for farms identification was 96%
(Fig. 4A). Merging together the data for large-scale distribution milk
(three different collections) the accuracy for brand identification was
still 95% (Fig. 4C). These findings demonstrate that the characteristic
metabolic fingerprint of milk samples exists independently of the
season.

To compare the two collections of farm milk and the three collec-
tions of large-scale distribution milk, the statistical analysis described
above for discrimination was repeated distinguishing samples from the
same farm (or brand) originated in different collections as they were
different farms (pseudofarms) or different brands (pseudobrand). In this
case we obtained a total of 18 pseudofarms and 9 pseudobrands. The
results of this analysis demonstrate that farm milk samples collected in
the two seasons are indeed different, and the overall cross-validated
accuracy is 96% (Fig. 4B). Considering the plot of the PLS-CA for
pseudofarms, it is possible to observe that samples of 2014 are “shifted”
to the bottom of the plot and mostly separated along the second latent
variable. Instead, the first latent variable (LV1) of the same PLS-CA
model tends to separate the samples according to farms. The loadings of
this PLS-CA model are reported in Supplementary Fig. 10 to show
which parts of the spectra contribute to the discrimination of the two
different year of collection (LV2, Supplementary Fig. 10B), and which
parts of the spectra mostly contribute to the farms characterization

(LV1, Supplementary Fig. 10A). The two sets of discriminating variables
are not completely orthogonal, meaning that at least some features are
affected by both seasonality and provenance, thus making more diffi-
cult to recognise farms without considering also the season of collec-
tion. Consequently, using the samples of the first collection (Autumn
2013) as a training set to blindly predict the farms of the samples of the
second collection (Spring 2014), the accuracy drops to 78.5%. Analo-
gously, the accuracy is 87.3% for the reverse analysis (i.e. predicting
the farms of the 2013 samples using the 2014 samples as training set).
For large-scale distribution milk, we collected samples in three periods
to have a clearer scenario of the seasonal variability. The first collection
(Autumn 2013) and the second collection (Spring 2014) are well dis-
criminated and the cross-validated accuracy is 90%. The third collec-
tion (Autumn 2014) is still different from both the collections men-
tioned before and this means that although the period of the year for
the third collection is the same as the first, the composition of milk is
different (Fig. 4D). In practice, although the recognition accuracy inside
each collection is very high, seasonal variations need to be considered if
the aim is to build a metabolomic method for origin assessment and
traceability.

Fig. 2. PLS-CA plot of large scale distribution milk samples. Brand 1, triangles; brand 2, rhombus; brand 3, circles. Collection 2013, A; collection 2014, B; collection
2015, C.
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3.5. Blind prediction of the origin of unknown samples

To evaluate the power of the metabolomic approach in the trace-
ability of milk, we were provided with additional eight raw milk sam-
ples from the Mugello farms, collected in March 2015. We used these
samples as a blind test set for assessing the predictive ability of the
samples collected in 2013 and/or 2014 used as a training set. Three and
four test samples were correctly assigned using, respectively, the 2013
and 2014 collections for training. Using both collection together in the
training set, six out of eight test samples were unambiguously assigned
to the correct farm. This latter result is quite promising, considering
both the complexity of the task (identifying the correct group among
ten possible choices) and the different period of the year in which these
new samples were collected (late Winter) with respect to the samples
included in the training set.

3.6. Analysis of cow feeding data

For each day of collection, raw milk samples coming from the
Mugello's farms were accompanied by data about cow feeding, reported
as kilograms of foods per bovine. These data are divided in eight dif-
ferent nutritional groups described in Materials and Methods section.
By means of PCA analysis of the cow feedings data, we selected the
farms presenting common nutritional profiles. Both for the 2013 and for
the 2014 collection, we found three different nutritional groups
(Supplementary Figs. 11A and 11B). For the 2013 collection, group 1 is
composed by two farms that use silage and hays as cow feedings; group

2 is composed by four farms mostly using silage as cow feeding; group 3
is composed by four farms, and in this case hays and cereal flour con-
stituted the major components of the feeding ration. In the 2014 col-
lection, the feeding composition of the three groups did not change
from those of 2013 and the only difference regarded group 1 that is
composed by two more farms previously belonging to the group 3 of
2013 (farm nr 2 and 7, Fig. 5B). The features of the three groups with
their composition in terms of feedings are reported in Supplementary
Table 4 and bar-plots of the composition of the three groups in terms of
foods are reported in Supplementary Figs. 12 and 13.

In order to evaluate the influence of cow feedings on the metabolic
fingerprint of milk, we considered the discriminant plot obtained
through PLS-CA and we checked the distribution of the three nutritional
groups into this plot. It appears that the metabolic fingerprint of milk
reflects cow feeding both in the 2013 and the 2014 collections. The
collection of 2013, as shown in Fig. 5A, is characterized by three dis-
tinct groups corresponding to the kind of nutrients given: in particular
is clearly visible the separation from farms that use silage (groups 1 and
2) and farms not using silage (groups 3). The same finding is true for the
2014 collection (Fig. 5B), where quite good separation of the three
groups is maintained and the separation of farms that use silage (groups
1 and 2) from farms not using silage is mainly visible along the second
latent variable (LV2). Farms 2 and 7 are more shifted towards group 3
along the LV1. These are the two farms belonged to group 3 in the 2013
collection, moving to silage feed, are now belonging to group 1 (col-
lection 2014, Fig. 5B). Finally, the PLS-CA model built to distinguish
farms using silage from farms not using silage revealed 98.8% pre-
dictive accuracy in discriminating the two kinds of feed (Supplementary
Figs. 14 and 15).

3.7. Effects of silages on the metabolic profile of milk

A total of 19 metabolites were assigned in milk spectra. The varia-
tions in metabolites content have been analysed in order to point out
differences between farms using or not using silages. Both collections
show some metabolites that are statistically different between the two
categories: for example the farms that did not use silages in the col-
lection of 2013 present a weak but significant increase (positive Log2 FC
values in Fig. 6A) of 2-oxoglutarate, choline, methionine, hippurate,
acetone, alanine and glutamate, and statistically significant lower levels
of acetate, citrate, N-acetyl carbohydrates, creatinine, creatine, lactate
and very low levels of an unknown metabolite (< 2.5-fold) if compared
with the farms that use silages (negative Log2 FC values in Fig. 6A). The
unknown metabolite presents the same trend also in the 2014 collec-
tion: in this case, samples from the two farms that did not use silages
present a 3-fold reduction of this metabolite. This unknown peak could
belong to a trimethylamine group. However, this signal cannot be un-
ambiguously assigned to any corresponding molecule. A good candi-
date could be lecithin, considering the intense signal resonating at
1.28 ppm (ẟH), 30 ppm (ẟC) that could be attributed to the methylene
groups of the acyl chains (Supplementary Fig. 6). Less marked but
statistically relevant common variations are also present for other me-
tabolites in both collection (Fig. 6A and B). Six metabolites present a
statistically relevant common trend: three metabolites are lower (cho-
line, methionine, hippurate) and three are higher (the unknown, crea-
tinine and lactate) in milk samples coming from farms were silages are
used.

4. Discussion

The peculiar features of several dairy products are related to the
quality and the origin of the milk used (Lamanna et al., 2011). In fact,
milk of bovine origin is both consumed fresh and processed into a
variety of dairy products (cheese, fermented milk products) and the
nutritional quality and the processing capabilities are closely associated
to composition and origin. In this sense, metabolomics is an ideal

Fig. 3. PLS-CA plot of Mugello farms, each colour represents a distinct farm.
Collection 2013, A; collection 2014, B.
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approach because it provides a good profiling of low-molecular-weight
compounds in milk (Sundekilde, Poulsen, et al., 2013). Many applica-
tions related to the analysis of milk through NMR have been proposed,
most of them focusing on linking milk metabolites content with nutri-
tional aspects, discovery of biomarkers of cow's diseases(Enjalbert,
Nicot, Bayourthe, & Moncoulon, 2001; M. S. Klein et al., 2010; Matthias
S. Klein et al., 2012; Sundekilde, Poulsen, et al., 2013) and analysis of
bioactive compounds(Garcia et al., 2012; Holmes, Snodgrass, & Iles,
2000).

In the present study, before considering metabolic fingerprints of
different kinds of milk samples, a novel procedure for NMR-based
metabolomics analysis of milk samples has been developed. Comparing
different pre-analytical procedures for obtaining soluble metabolites
from a heterogeneous fluid such as milk, the use of dichloromethane
has given good results in terms of quality and reproducibility of the
spectra. Spectra of milk samples obtained using ultracentrifugation and
filtration with 10 kDa cut-off are good, especially in the case of filtra-
tion, in which no broader signals are present. Our experienceconfirm

that sample preparation based on organic solvent such as chloroform or
dichloromethane is a viable alternative. The quality of the spectra ob-
tained is comparably good: the signals of metabolites are clearly visible,
and no broader signals are present. Although chloroform and di-
chloromethane provide similar spectra, the preparation with di-
chloromethane appears preferable. First, dichloromethane is less toxic
than chloroform, second the signals of β-hydroxybutyrate, and creatine
are better visible after the extraction with CH2Cl2. The detection of
these two compounds can provide important information: β-hydro-
xybutyrate is known to be a diagnostic biomarker for cow ketosis
(Matthias S. Klein et al., 2012) and it also increases in relation to so-
matic cells count that is normally used as an indicator of mastitis in-
fection (Sundekilde, Poulsen, et al., 2013). Creatine plays a key role in
cellular energetics and its deficiency is associated with several neuro-
logical manifestations. Creatine is also found in milk and dairy products
but in a relatively small amount. Estimating the amount of creatine can
be useful to assess the nutritional value of milk.

Metabolic profiles of milk samples reflect with high accuracy the

Fig. 4. PLS-CA plot of milk samples considering all the collections together. Discrimination among different farms, aggregating samples from the same farm ori-
ginated in different collections, A; discrimination among different farms, distinguishing samples from the same farm originated in different collections as they were
different farms (pseudofarms), B (diamonds: samples from Collection 1, circles: samples from Collection 2); discrimination among different brands, aggregating
samples from the same brand originated in different collections, C; discrimination among different brands, distinguishing samples from the same brand originated in
different collections as they were different brands (pseudobrands), D (the same symbol identify the same brand in the three collections). The separation line in panel
B is manually drawn only for visualization purposes.
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farm of origin. Also considering two distinct milk collections (summer/
autumn 2013 and spring 2014), the results did not change and the
accuracy for the discrimination among farms is very high. Milk coming
from organic and non-organic farm can also be identified, and this is
likely due to the different cow feeding. Extending our approach to
large-scale distribution milk it is possible to observe a clear separation
between the three brands that we have considered, although in this case
each brand of milk originates from a more extensive geographical area.

Milk samples collected in different periods are indeed different.
Identifying the reasons of this seasonal variability is not an easy task: in
different seasons several factors can change, e.g. living environment,
nutrition, metabolism, etc. Our results show that considering each
collection period separately, milk presents some features that allow us
to correctly identify each farm (for the Mugello samples) or each brand
(for the supermarket samples). For raw milk coming from Mugello
farms, the distribution of the two collections in the PLS-CA plot is al-
most the same; however, the 2014 samples are shifted to the bottom
part of the plot, demonstrating a seasonal metabolic shift. Due to this
variability, the accuracy for predicting the farm of provenience in one
collection, using the other as training, is suboptimal (78.5% and
87.3%). However, pooling together the two collections permits the
correct prediction of 6 out of 8 “unknown” samples, demonstrating that
repeated collections can average these variations, and confirming the
possible role of metabolomics for the traceability of products. In any
case, further analyses with a larger number of samples in different
seasons are needed to fully validate this approach.

Analysis of nutritional profiles during the collection periods has

been performed in order to evaluate the influence of cow nutrition on
the metabolic profile of milk. Both for the 2013 and for the 2014 col-
lections, we obtained three different groups: the composition of the
three groups in terms of foods did not change drastically, except that
two farms that in 2013 did not use silages started to use silages in 2014.
The three nutritional groups are perfectly discriminated in the PLS-CA
plot of the metabolic profiles, confirming the great influence of cow
feeding in the composition of milk. In particular, the three groups are
well-discriminated in both collections, even if in the 2014 PLS-CA plot
two farms belonging to nutritional group 1 are shifted near group 3. We
have noticed also that the most important difference between the three
groups is the evident separation between farms using and not using
silages. In fact, in both collections, groups 1 and 2 are composed by
farms that use high quantity of silages, at variance with farms belonging
to group 3 that mainly use hays. This finding is very important for the
production and authentication of dairy products: for example, the
production protocol of the Italian cheese “Parmigiano Reggiano”
(Parmesan cheese), that is strictly regulated by the European Union,
forbids the use of milk coming from bovines fed with silages (Council
Regulation 510/2006) to avoid contamination of the product by clos-
tridium bacteria that cause malformations in the wheels of cheese
during maturation. Thus, analysis of metabolic profiles could be a fast
and reliable tool to screen milk for the presence of silage in the animal
feedings, and possibly to prevent fraud in the preparation of original
cheeses. Although in the two collections it is possible to identify several
common metabolites that are statistically different between farms

Fig. 5. PLS-CA plot for the discrimination among farms, highlighting the nu-
tritional groups obtained by means of PCA on nutritional data. Black dots,
group 1; white squares, group 2; white dots, group 3. Collection 2013, A; col-
lection 2014, B.

Fig. 6. Log2(FC) analysis between farms using feeding without silages (Log2 FC
positive values) vs. farms using feeding with silages (Log2 FC negative values).
Grey bars are related to metabolites statistically different between the two
groups (p < 0.05). Collection 2013, A; collection 2014, B.
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where silages are used or not, the most important difference is related
to an unknown signal resonating at 3.11 ppm (ẟH), that is strongly
reduced in farms where silages are not used, both in 2013 (2.5-fold
reduction) and 2014 (3-fold reduction) collections.

5. Conclusion

The present work supports NMR-based metabolomics as a useful
tool for the analysis of milk. Sample preparation is very important in
order to obtain reliable results, and it should be fast and accurate in
order to analyse several samples together and to obtain good quality
and reproducible spectra. For this purpose, after testing protocols from
the literature and comparing them with the one developed in our la-
boratory, we propose extraction using dichloromethane: it proved to be
a fast and cheap method, and provides information about two im-
portant metabolites for the metabolic status of the cow (β-hydro-
xybutyrate) and nutritive value of the milk (creatine). Further, the
metabolomic approach has proven to be a valid method in assessing the
origin of authentic products, both considering a small geographic valley
(Mugello) and a larger area (large-scale distribution). However, sea-
sonal variations need to be considered using repeated collections, due
to the changes over time of the composition of milk. This method is also
able to provide information about the nutrition of the cows, opening
scenarios for the monitoring of the production of dairy products (e.g.
Parmesan cheese), although its potential in fraud detection needs to be
further investigated. In this respect, the NMR analysis performed di-
rectly on cheese samples can be the natural continuation of the present
work.
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